DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Un

« r—— o ——— e




B
i
Py
,
}
]
.
;

DTIC

ELECTE
DEC 2 3 1981

UNBOUNDED SPFED VARIABILITY IN DISTRIBUTED
COMMUNCIATIONS SYSTEMS
John H, Reif*
Paul G. Spirakis
TR-14-81 \/
o — <. v e
AAAC(:wssw“nn For n
NTTa oragy )(/""
nvr e oran
l' , F] : :‘
i SR G e e [
BY oo s e
| Distribution/
| Avoilability Codes
iAvail andjop
Dist Special
*This wor™ was supported in part by the National Science Foundation
Grant N3P-MCS79-21024, and the Office of Naval Research Contrack:
NO0014-80-C~-0647.
a
i

" DISTRIBUTION STATEMENT A

Approved for public release
Disttibution Unlimited

D

T e LR . S i Sy £, B
A

. e e T

.
T e g—— e, e

e

At e gt

b ..




Unclassified

SECYRITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

T REFORY NUWBER }D-z cl&gbjt'

3. RECIPIENTY'S CATALOG NUMHER

4. TITLE (and Subtitle)

Unbounded Speed Variability in Distributed
Communications Systems

8. TYPE OF REPORT & PERIOD CIVERED

~Technical Report

6. F;!\FORMINO ORG. REPORT NUMBER

7. AUTHOR(Y)

Jokn H. Reif
Paul G. Spirakis

T8 CONTRACT OR GRANT NUMBEAR(S)

N00014-80-C~0647

$. PERFORMING ORGANIZATION NAME AND ADDRESS

Harvard University
Cambridge, MA 02138

10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBERS

11, CONTROLLING OFFICE NAME AND ADDRESS

QOffice of Naval Research

12. REPORT DATE
1931

same as above

13. F
800 North Quincy Street ;;uaen OF PAGES
an, VA 22217 :
4. MONITORING AGENCY NAME & ADDRESS(I! ditferent from Controlling Oflice) 18, SECURITY CLASS, (of thia report)

1Sa, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

unlimited

Approvad for public release}
Distribution Unlimited

" DISTRIBUTION STATEMENT A

unlimited

17. DISTRIBUTION STAT':MENT (of the abstract entered in Block 20, I difterent from Report)

18. SUPPLEMENTARY NOTES

Csp, multiprocessing

19. KEY WORDS (Continue on teverse alde I{ neceeasry and identily by block number)

real time, syichronization, parallel algorithm, distributed communication,

20. ABSTRACT (Continue on reverss eide It neceseary and tdentily by block number)

81 12

See reverse

22 110

DD ,

FORM
JAN 73

1473

COITION OF | NOV €315 ODSOLETE
S/N 0102-0)4- 8601

SECURITY CLASSIFICATION OF THIS PAGE (=ren Data Entered)

ity

e et comibe ol mlin 41




\C
i
|
!

R e R

Unclecaifiec . ,
v WUHITY CLASSIFICATION OF THIS PAGE/When Date Entersd)

20 »
\\SA . Abstiact

This paper concerns the fundamental problem of synchronizing communication
* between distributed processes whose speeds (3teps per raal time unit) vary
dynamically. Communication must be established in matching pairs, which are
mutually willing to communicate. We show how to implemeant a diatributed local
schedule. to find these pairs, The aonly means of synchronization are booiean
¢flag? variables, each of which can be written by only one process and read by
at most one other process. (Shared variables are very difficult to implement
in the case the processes are running in different processors in a communicaticn
network.) WNo alobal bounds in the gpeeds of processes are assuned. Processes
with speed zero are considered duad. However, when their speed is nonzaro then

they exacute their programs correctly. Dead processes do not harm our algorithms:

performance with respect to pairs of other running processes. When the rate of
chanye cf the ratio of speeds of nuighbour processes (i.e. relative acceleratior)
is bounded, then any rwo of these processes will establish communication within
a constant number of vtaps of the zlcwest process with high likelihood, So, our
implementation has the property of achieving relative real time resprnse. We
can use our techniques to solve other problems such as resource allocacion and
implementation of parallel lanquoges -uch as CSP and Ada. Note that we d¢
not have any probability assumptions about the system behavior, although our
algorithms use the tecimique of probabilistic choice.<;_

Unclassifiec

SECURITY CLASSIFICATION OF THIS PAGE(Hhen Dats Entered)

T e A e R BB b b

i L

*
¥
]

.. "“”"'“"‘ﬁﬁ,ﬁ;‘iﬁiﬁm

D o it

[P,



e ot i T TR e b L

UNBOUNDED SPEED VARIABILITY IN DISTRIBUTED

COMMUNICATION SYSTEMS
by

John Reif and Paul Spirakis
Aiken Computation Laboratory
Divigsion of Applied Sciences
Harvard University, Cambridge, Massachusetts 02138

l.1 Aabstract

This paper concerns the fundamental problem of synchronizing communication
between distributed processes whose sSpeeds (steps per real time unit) vary
dynamically. Comnunication must be established in matching pairs, which are
lutually willing to communicate. We show how to implement a distributed local
scheduler to find these pairs. The only means of synchronization are boolean
"flag" variables, each cf which can be written by ~nly one process and read by
aft most one other process. (Shared variables are very difficult to implement
in the case the processes are running in different processors in a communication
netwerk,) No global bounds in the speeds of processes are assumed. Processes
with speed 2ero are considered dead. However, when their speed is nonzerc then
they execute their pregrams correctly. Dead processes do not harm our algorithms'
performance with respect tc pairs of other running processes. When the rate of
change of the ratio cf speeds of neichbour processes (..e. velative acceleration)
is bounded, then any two of these pricesses will establish communication within
4 constanrt number of steps of the slowest process with high likelihood. Sw, our
implemeutation has the property of achieving relative real time respcnse. We
can use our techniques to solve nther problems such as resource allczation and
implementation of parallel lanquages such as CSP and Ada. Note that we do
not have any probability assumptions about the system behavior, althongh our
algorithms use the technique of prebabilistic choice.

1.2 Introduction

Recently, [Reif, Spirakis, 1981} showed how to achieve real-time response
using probanilistic synchronization techniques, with the assumption that the
speeds of all processes were bounded between fixed nonzero bounds. This lead
to (see appendices I and IT of |keit, Spirakis, 1931]) real time resource
allocation algorithns and real time implementation of message passing in CSP.

In this paper we assume 10 globui bounds on the proceasors' speeds. They
can vary dynamically from zero to an upper bound which may be different for
each processor, and not known by che other processors. We allow a possibly
infinite number of processes, so that there may not be a global tpper bound vn
the speeds. Processes may die (have zero speed) but when they have nonzero
speed then we assume they exccute their programs zorrectly. We are interested
in direc? interprocess communication (rether than packet switching) which is of
the form of handohake (rather +than buffered), as in Hoams CSP. [Hcare, 1978].
The essiuntial technique that we utilize is that of probubilistic choies, This
technique, introduced tc synchronization prchlems by [Rabin, 1980], [Lehmann and
Rabin, 1981] and [Francez, Rodeh, 1980], was alse utilized in our previous work.
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The use of probabilistic choice in the algorithms leads to considerable
improvements in the space and time efficiency [Rabin, 1980), [Reif, Spirakis,
1981]; we feel that this may be because complex sequences of processes' steps
prohibiting communication have very low probability of occurrence. We also
introduce new adaptive techniquea: The processes estimate the speeds of
neighbour processes and select them to communicate with probabilities depending
on the speeds, penalizing the slowest processes, These adaptive techniques

do not seem to have ever been utilized in the previous synchronization literature,

1.3 Relative real time response

If processes are bounded in speed then it is natural to define real time
response to be a response to a communication request that uses no more than
constant number of units of real time. This measure is inapplicable in our case
in which there is no global upper bound and no nonzero lower bound on speeds.

Thus we introduce the notion of relative real time response which is establish-
ment of communication between any pair of neighbouring processes within constant
number of local rounds (A local rowid of neighbour processes, i,j is the minimum
time interval which contains at least one step nf each process and exactly one
step of the slowe” ™ of 1i,j). We achieve this by our probabilistic algorithms
with some probability of error which can be made arhitrarily low. We conjecture
that it is not possible to achieve relative real time respsnse without use of
randomization. The best deterministic symmetric algorithms which attempt to

form matchings in distributed systems have a relative respense depending linearly
on the network's diameter. (Also, [Arjomandi, Fischer, Lynch, 1981] have actually
shown that some synchronization problems which are global (in contrast to our
problem) cannot be done in real time and require time proporticnal to the
logarithm of the total number of processors in the network. A typical situation
where this could occur is the problem of detecting connected components of
processes whcse speeds are within given bounds e.g., with nonzero values.)

2. The model VSDCS (Variable Speed Distributed Communication System).

We develop here a theoretical model related to. but more general than, the
DCS (Distributed Communication System) of [Reif, Spirakis, 198l1], We will
attempt to describe our model in words and avoid mathematical notation in this
abstracted draft. A detailed description of the fundamental issues can be found
in [Reif, Spirakisg, 1981].

We assume a possibly infinite collection of processes T = {1,2,...}.
Events of the system are totally ordered on the real-time line [0,%).
Each process consists o’ a fixed set of synchronous paralle! subprocesses
(i.e. with same speeds) where we distinguis the director subprccess. The
director wishes at various times to communicate with directors of other
processes but has no means of communication except via the communications system.
Thir is implemented by many poller subprocesses (three for ea~h target process)
which are synchronous with themselves and the director. We assume a fixed
cornections graph H which is undirected and has the set n as its vertex set.
An edge {i,j} indicates that process 1 is physically able to communicate
with vrocess j (but not necessarily willing to). H 1is assumed to have finite

valence. We also assume for each time t the willingness digraph G, which
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‘ indicates the willingness of a given process 1 to communicate with a 'q.{venv
_ : neighhour Jj at a given time t. (We indicate it by the edge i -€"j and
4 say i is a willing neighbour of 3.).

S SN

4 Note that i —s—#J only if {1,3} e n

The edges of this graph are stored distributedly so that the edges departing
from a given process are only known to that process. We assume that the outdegree
of each vertex of G, 1s upper bounded by a fixed constant v. For each t > 0,
the (possibly infiniEe) digraph Mt with vertices 7 and directed edges

; i——AQM-.j denotes which processes cpen communication to other processes at
w time t. We denote in—«‘\g‘\-——j if both i--N\t/:\--j and j-—-ﬁg\-pi. Thus

'_ ‘ i-n-/‘t'__‘\——j denotes 1i,j achieve mutual commumication at time t. M, is tuc

digraph that implementations of distributed synchronization achieve, We wish
implementations to be proper in the sense that
(a) i--NéA->j only if i <—e—=j (neighbours try to speak only if
they are mutually willing to)

(b) .—-—-/\{\-—~> must be a partial matching.
If i«—-{__\N-j then not j'%i for
any j' € v - {j}. (Nobody is allowed to speak with two or more
neighbours at the same time.).

Again, we assume that processes can suddenly die (i.e. have 2zero speeds)
but when they are awake they execute their programs correctly. We furthermore
assume that each process has an upper bound on its speed which may be diffexent
from the other processes and not known to them.

We define the reiative acceleration bound o of processes i and j to
be the worst case absclute rate of change of the ratio of steps of the two
processes per step ¢f any of the two processes. The correctness of our
synchronization algorithms does not depend on whether processes are acceleration
bounded, however we assume fixed acceleration bound © in our time complexity
analysis. (i.e, the relative acceleration of one neighbour with respect t»
another is bounded by a constant bound o or can be -= if the process dies).

R W e

2.2 Communication commands for the VS~DCS

The following communication primitives can be implemented by the poller
subsystem and executed by the directors of each process: (The director may not
get an immediate answer but may proceed to some other instruction and later a
time slot for communication will be arranged by the poller).

M ATTEMPT-COM, (pj) : indicates that the director of i wislies to communicate
with the director of process ji.

CANCEL-COM; (pj) ¢ indicates that the director of i wishes no longer to

communicate with pj.
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The precise semantics of ATTEMPT-COM and CANCEL-COM are given by the
relation —-—-—t-—--vs ™ x7n (the willingneas digraph, defined in section 2.1).

2.3 Complexity of v8-DCS

We assume a worst-case oracle w/ which at time 0 chooses the speeds of
all the processes for alil times, f is also able to dynzmically change the
willingness telatiohﬁﬁﬁuz—-vti.e. dynamically choose one of ATTEMPT-COM,
CANCEL-COM for the directors to execute) so as to achieve the worst case
performance of the implementation of VS-DCS

We say f 18 tame for i, J on time interval A if the pairs
{ti,HY v {(4,%) | X is a neighbour of i} U {(3,k) | k is a neighbour of j}
are each relative accelaration bounded by 7 on the time interval A.

(We assume here a global constant a).

For every € on (0,1) let the €-error response <€{Z} be an integer > 0
such that for every pair of neighbours i,j and each tir interval 4 and for
every oracle .o/ which is tame for i,j on A, if iv-—r—-—-j and the
number of steps of the slowest of i,j within A4 1is > S(€) then there exists
a subinterval A' € 4 such that i«-—-‘&‘,\—»j with probability > 1- €.
Intuitively 1-€ gives a lower bound in the probability of establishing
communication in the case process 1 issues an ATTEMPT~COM (Pj) at the
beginning of 4, and after S(c) steps it calls CANCEL-CCM (pj). {Note that
we presume here that i and 3j and their neighbours have relative
acceleration bound 2 during the interval 4; at other times this acceleration
bound may oe violated, and furthermore the acceleration bound & need not hold
for other processes even during the interval A).

We consider an implementation of VS-DCS to be relative real time if for
all constants € on (0,1), the relative c-error response S(€) is independent
of any global measure of the willingness digraph Gt (such as fﬂ! or any
function of it) and indeperdent of any local measure of G, except the

. t
constant maximum valence v of the vertices of G.. (5(c) may depand on

t
the bound « on the relative acceleration). Note that relative real time
response does not imply that communication is guaranteed within any time
interval but instead it is guaranteed within a bounded number of steps of the

processes with high likelihood (this is because processes c¢an slow down

arbitrarily). In this paper we show how to «mplement the VS-DCS so that relative
real time response is achieved.
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3. Applications of VS-DCS

 The primitives ATTEMPT-COM, CANCEL-COM of VSDCS are powerful enough
to supply real time implementations of synchronization constructs of high-level
parallel languages like CSP? and Ada.

3.1 Real time resource granting systems with process failures

Previously, in [Reif, Spirakis, 1981) we utilized the more restricted DCS
system (which does not allow process failures) to implement a real time resource
granting system. In this paper, we can cope with sudden process failures (zero
speeds). In this case, the process governing a resource will attempt to communi-
cate for as?(e)/2 of its steps with a process granted the resocurce. If
thet process does not respond, the resource governing process may reclaim the
resource. 1f a resource allocator dies, then other processes can play its role,

3.2 Relative real time implementation of CSP and Ada's synchronization constructs.

In a typical stage during executicn, the processes comprising a CSP progran
may be divided into two classes: those busy with local computations and those
waiting for a partner to communicate with. A distributed guard scheduvler can be
implemented by using the poller subprocesses of the relative »eal time VS-DCS
systen. :

Alsc, in Ada, two-way communication between pairs of tasks is allowed in
synchronized time instances called rendezvous. An accept stacement of the form

accept f£(-) appearing in task T1 indicates that Tl is willing to rendezvous

at f with any task of similar argument type. The task 7, may execute a call

statement of the form f£(-~) indicating that T, is willing to rendeavous with

2
T, at the accept statement containing f. Ada also allows for selective
aécept statements containing multiple accept statements, one of which must be
nondeterministically chosen to execute. (This is similar to the select
statement of CSP).

Ada's tasks may be implemented by processes whose speeds vary dynamically.
{(Processes may even fail for various time intervals.) The key implementation
problem is to synchronize task rendezvous within relative real time, in spite of
the dynamic speed variations. These processes may be connected within a
distributed network whose transmission channels may also have variable speeds or
fail. Unreliable transmission channels can be viewed as processes which are
connected with the processes of the network via reliable communication channzls.

We assume that it is possible to analyze (perhaps by data flow analysis)
an Ada program to determine an indirected (possibly infinite) connections graph
whose nodes are all the tasks possibly created by the Ada program and edges are

sl

g




the possible task communication pairs. Since an actual implementation will
have in its hands at any time only a finite set of processes we asgume that
only the currently active tasks have an associated implementing process and :
that a ca’l to 2da's 7initiate statement devotes a currently free process to {
‘ a given newly created task. An abort statement garoage collects the implementing :
» i process from the deleted task and places it back to the frea list of procesges, i
’ : These implementation techniques were developed by [Denis and Misunas, 1974] for
’ ' real time implementation of data flow machines.

The synchronization facilities of the VS-DCS system provide a real-time
i implementation of the accept and call statements. A version of the active
‘ . statement can be implemented so that deleted tasks can be detected by their 1
neighbours in real time with some (arbitrarily small) error probability. Finally, i 3
the symmetry and locality of the VS-DCS implementation (due to its probabilistic

nature; may help in eliminating the tradeoff between generality of expression
and ease of implementation in Ada.

The probabiligtic fatrmess quaranteed by the algorithms of the pollers

eliminates the danger of bottlenecks which could be created if conventional

} techniques were used (a rew task which centralizes requests and keeps track of

' busy server tasks is one of the conventional proposed solutions). Most of the

r problems which VS-DCS could cure are discussed in [Mahjoub, 1981], [Francez,
Rodeh, 1980]. A probabilistic solution to some of the discussed problems was

given also in [Francez,Fodeh, 1980] but no discussion about real-time properties

was done and neither the pureblem of speed variations and dying procrsses was
addressed.

4. Relative Real Time Implementation of VS-DCS

4.1 Intuitive description of the algorithm,

We utilize 3v + 1 synchronized parallel processes to implement the poller
subprocess for each process 1i. These arc the commmicators
Pl' pz""' p2v, the sreed estimators ei,..., ei and the Judge subprocess of

process 1i. Each pair of the communicators p;, pk" (with k'mod v = k" med v = k)

estimator is used to continuously update an estimation of the speed of a
particular neighbour process, The judge has the task to select under certain
conditicns one communicator and tu give to him the right to open the communica-
H tions channel of node i to its corresponding neighbour., We frequently use the
: technique of handshiate by which we mean that each subprocess modifies a flag
variable observed by the corresponding neighbour subprocess. Process contention
between synchronized pro.csses is easy to implement (we can allow each to take a
separate step in a small round).

| ol is devoted to communication with a specific neighbour (the kth neighbour). Each
-
i
{

[
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Our algerithm for the K P communicator subprocess p; (1 £k < 2v) of the
poller of process i proceeds as follows:
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Lat k' » k modv. At every time ¢t >0, Eitl),..., Ei(Di) is the list
of targets of edges of Gt departing from i € 7, and D1 is the current number
of the targets (D1 < v). Those variakles are dynamically set by the oracle . i
and they are the neighbours to which process i 1is willing to open communica- i
tion at time t. The subprocess pk deals with the E (k') neighbour. If ;
k < v, then pk is an asker subprocess, else it is a respondbr process, pi must ;
first handshake with the corresponding subprocess of process Ei(k.) to which
node i wishes to communicate. We need two handshake subprocesses (ask, respond
respectivaely) per neighbour because of a certain asymmetry in the handshake (some R
has first to modify a flag). In particular the asker procedure initiates the e
handshake and the resprnder answers to it.

Next we wish to find a time slot in which the two neighbours may communicate.

Eecause there may be contention among other processes j vhich also wish to

communicate with i (and consequently, other askers or responders of node 1
also will handshake) we must resolve the contention by a fair judge. To do
this, we add the process pi to a queue and an additional synchronous

subprocess of poller i, the judje takes a random process from this qQueue and

e e et 2 s v . .

zllocates time slots for communication atiempts. To ensure that slower
neighbours do not utilize any more total time on the average than faster
neighbours during communication attempts, we weigh the probabilities of sub-
pProcesses to be chosen from the queue by the factor
l/Aik o
Z14,; . 2
j :

where Aim (m=1,..., v} is the current estimation of the steps of process i
per step of process m, suypplied by the estimator e;.

This has the effect that each Zubprocess in the queuve attempts to communicate
on the average 1/2v of the total time. (See the analvsis for a proof of that).
If a process is chosen by the judge but the communication is not established, the
algorithm requires that subprocess *to initiate another handshake with its partner
(to check if they are still mutually willing to communicate and to synchronize
steps). Then, it is again added to the queue to be given another charce to
establish communication. This process proceeds until either the director of i

withdraws its willingness to communicate with Ei(k') or unti) it establishes -
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communication, Note that the slocs allocatad by the jundae to cach selected
communicator, take into account the current spead ratio of the node i and its
neighbour vorresponding to that communicator, adjusted by a factor related to
vworst-case acceleration, to give thne opportunity of at least one step overlap in
time of process i and its neighbour, 1f their corresponding channels are both open.

We introduce random waits which help subprocess p; to eliminate the

possibility of sclaedules set-up by the oracle & to have always a particular
subprocess arrive first in the queue and win the contest. This possibiliey is
eliminated since the oracle sets the speeds at time Q and cannot affect the
random choices done by the processes,

Also, our algorithms assume each process has a perfect random bit
generator, independent of the random bits Jenerated by other processes.

Note that we trade computation effort (parallelism) in a node to achieve
reliable communication. This parallelism is limited because of the bounded
valence v of the graph G,. We can always simulate these synchronous
parallel subprocesses in a node i1 by a single processor, using round robin
techniques. This will reduce the effective speed of each subprocess by only
a factor of 3v + 1.

4.2 The programs of the pollers
For each poller i € m , we assume

Synchronous subprocesses

P;c Pi.---. Pi {askers)
1 .
Poayrtoer Phy (respondexs)
ei ei (estimators)
Lttt ey

and the judgei

BEach of the communicators p; executes the following program

i
process Py

locals Aik
WHILE true DO
Lo: IF D, >k THEN
BEGIN .

Ll: Choose W at random from [0,4(2v+1) (20+1)]

do W noops

if k <v then ASK(Ei(k)) else RESPOND(E, (k))

add k to Q

WHILE marriagei(k)=0 DO noop
X -—EST/.BLI3H-COM (Ei(k).A(z a+ 1) A
martiagei(k)-- 0
IF x THEN GO TO L1 ELSE GO TO LeC

ix’

END

2 s i

i

s
s

ST TR W TR

A ed F o

| S Y




. i
The speed estimator e

process

o

R:

oD

Notc that Fi

k
ei
k
FOREVER
set Fik to 1,

wait until Fki is set

zero T,
i

k ; 8 + CURSTEP

wait until Fki is zeroed

A “ CURSTEP-s
ik 2

is a flag set by i, read by k.

The speéial register CURSTEP gives the current step of process

. i
assume that a step cousists of an elementary statement of the pregrz S ;e

i. We

k'S

execution assures that Aik is (within a factnr of 2) the actual speed ratic

of processes i

and k, since from step A to step B the fastest of the

partners does CURSTEP~-s steps and the slowest does 2 steps
preocess judgei
WHILE true DO
IF Q# @ THEN
BEGIN
choose and delete a random element k of the queue
, ‘s A,

Q with probability Y ik
I 1/4,
3 1]

END
oD

mm'riagei(k)*--~ 1
WHILE marriagei(k) =1 DO noop
END

Note: The assignwent of the marriage; variable by thz judge allows pi to

attempt a communication with the corresponding subprocess of che neighbour

Ej(k') .

o

H- il
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The following are the low level synchronization procedures used by the

poller programs:

procedure aski {target)
BEGIN
Q; , target 1 ’
WHILE Ata#get,i = O DO noop
Qi,target O3
WHILE Atarget,i =1 DO noop
END

Note: The set of the flag gi'target means that 1 asks the target. If

the target detects Qi,target =1 then it answers positively by setting

A ., = 1. -Both partners reset these flags to O at the end of procedures ask
target,i
and respond-.

procedure respondi (asker)
BEGIN
LOOP UNTIL Qasker,i =1
BEGIN

’

A,
i,asker

WHILE Q = 1 DO noop

asker,i
Bi asker ¥ 0;
END

END
We finally present the code for the procedure ESTABLISH-COMi(target,Q). During
its execution node 1 opens its channel to node target. A simple protocol
(symmetric handshake) is then attempted to see if the neighrour responded to
that communication attempt. If the protocol succeeds then node i 1is sure that
node target also opened its channel and communication took place. Else, node i
knows that the attempt failed,

procedure ESTABLISH-COMi (target, )
BEGIN
: , 1
open Channeli,target COMl,target -
S0 « CURSTEP

b « 1

WHILE (COMtarget,i
BEGIN
IF CURSTEP-S0 > £ %dEN b « 0
END

=0) or (b=1 DO

T N T U

BT —— e g 2




= 1) AND (b « ) THEN successe—1]

IF (COMtatget,i

ELSE B8uccess «=—0

b«~0 ; COMi,target‘—o

close channel

i,target
return (success)
END-
Note: COMi,target is a flag of node i and COMtarget, i is a flag of node
target. open channeli target corresponds to the appearance of i-—’{“———»target
’

at the time of its execution. Also, 2 is the maximum number of steps we are
allowed to keep channel open before we fail.

5. Correctness properties of our proposed implementation and time énalysié.
Lemma 5.1 A matching (with respect to the relation "——-Nz\—-—) is guaranteed
by the implementation.
Proof
In any time instant, only one of the subprocesses of any poller can have
the marriage variable set and its channel open. So, the relation-—-—Agﬂ—-.
is one-one which means that-c—-Ag“-—- can not be more than a matching.
Lemma 5.2 Death of a process does not affect the communication of other
processes.
Proof
Death of process "target" at any time will only cause blocking c¢f only one
subprocess (Piarget) per neighbour i of target. This does not disrupt the
other subprocesses of the neighbours.
Lemma 5.3 Suppose that 1i,j start to be mutually willing to communicate at
time t and continue to be willing for 5 local rounds. Then all
four subprocesses p§ ' p§2 and pz ’ pg (with j1 modv = j2 modv = j
and il modv = i2 modv = i) will arrive”in the queues of i and 3j
in a constant number (5) local rounds.
Proof,
Note that at each time the slower of i,j will do only one step in the

busy waits of procedures ask or respond. The result follows simply by counting

the steps to be executed in each of the procedures. o

Let Aij be the current estimation (within a factor of two) of the ratio
of steps of i per step of j (estimated by 1).
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Defiaition 5.3 Let h = Z .

x=1 Cik .
Definition 5.4 Let pyy be the ratio 1/fhA,,)

‘In the following we assume that the oracle «f is tame with respect to

processes i,j in the time interval they attempt communication.

pefinition 5.3 Let §;j be the average number of steps that p; does

before it is selected to attempt communication, measured from the time it enters
the queue.

Lemma 5.4 §;j < Bve(20#1)+4;; vhere Aij is the most current estimation

Proof
Note that the probability to be chosen follows a geometric density
(1 O )h 1. o where h = the number of selections done before p1

Each t1me p is not chosen, it waits in the queuwe for an average time bounded

above by 2v
I c*A, .
k=1 ik 1k

where ¢ = 4(20+1),

So _ o 2v
S;4 2 % prob(lsu unfortunate ) h* I ceA, o,
1 h=l elections for p; k=1 ik "ik \
1 v 2v - \
L= s Zch,p,, =hA S = 2veh, |
pij k=1 ik"ik Tij k—l h ij !

Theorem 5.1 Each subprocess expects (o get the channel > 1/2v o{ the time.
Proof

The axﬁidge number of steps pk gets the channel is

- ik . 4(20+1)
SQ h 4 (20+1) Aik = "

[

In the vorst case of process i being the fastest and all neighbours

slowing down with the same worst case acceleration ¢, SQ is the same for all

The worst contention happens when all 2v subprocesses
are there. Hence, in the worst case, if T

processes in the queue.

is a time interval and TQ i3 the
subinterval of T in which pi has the channel, then
|T S
mean ( > 2. 1
| - 2v3 2v g
| 2 /Ay,
Note that this justifies thc use of the estimate ———— as the
Zl/Aij

In the: followmng we assume 1 < i,k' <v and 'k = k' + v. Thus p:, is the
asker and pi is the responder.

probability to select subprocess pi from the queue. J

3 is selected.
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lemma 5.5 The nrobab‘l*ty of instaataneous overlap of subprocnsses p; and
1

.
pi in their channels is > Sv

By theorem 5.) ané by the.fact that the -random waits, done by the subprocesses
before each return to the queue, cause the relative pasition of the time intervals
during which channels are open to be’ random, not. affected by the oracle f,

(Note that it is essential here that-the waits are uniformly distributed in the
interval whose lengtl is the mean number of local rounds attempt communication and
given by Theorem 5.3). ' n

Definition 5.6 Let 8urcess in communication be an ovcrlap of open channels for

at least one step of both processes i,k'.

Definition 5.7 A phase of subprocess p; is a random wait, a handshake with
pi, a wait in queue and a communication attempt.

Theorem 5.2 The probabillty of success in communication in a phase of

s i >£
subprocess pk is 23 2v

Proct
When the subprocess p; opens its channel, the number of steps done from
the time of the last estimation of A, is at most 2Aik and hence, the new

ik

speed ratio can be (20+1) Aik in the worst case, {in which, process i |is

the fastest and process k' slows down continuously with the maximum acceleration,
so that process i does more and more steps per step of k!'). In this case, a
communication attempt of 4(2a+l2Aik time slots guarantees that p? will do at
least 2 steps during the time p; has its channel open. Because of the random
relative position of these steps with respect to pi's steps (due to random waits),
Prob (length of overlap is > 1 step given that there is an overlap) > Zgl-ﬂ L
Hence

-~
<

Prob (there is an overlap and its length is > 1 step of both processes)

1 1
D> == 8] .
- 2 2y
by Lemma 5.3 o

112
Definition 5.8 Let Y min = 3 \3v .

Definition 5.9 Let Uy (h4~9 be the probability that it takes exactly h
phases for poller subprocess pk to ~ommunicate with p k!

) h-l

Lemma 5.10 For amnyoracle o, 9, (h{g) < (I-Ymin

soiEamdn

.
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g Proof
| ' It sufficies to observe that the process of pi be anewered by pt' is
a geometric stochastic process with success probability bounded by {Ymin'll'
By using the above lemma and known expressions for the mean and the tail of a
| 2 geometric we qeﬁ

Lemma 5.7  mean (h) <

-~ *..}:».a..»:.( s

2
| B
i Vpin!
L Lemma 5.8 Ve, 0<e<1l,Prob{nh>n  (e)}<ce
% where Log (Ymine)
Lo h (E) = - W
‘.n max Rg (1 Ymin) '
Nofe‘that, in the worst case relation of speeds of procegses i,k , the total
length of a phase of subprocess p: is the number of local rounds in the random I
wait plus the number of local rownds up to the end of the communication attempt, }
R which is g§(2v+1) (2a+1) (by the algorithms and by Lemma 5.4 and Theorem 5.1.)

Hence we get

Theorem 5.3 For the worst case oracle .« , the mean number M of local rounds

) _ to achieve communication is 4
q M < 64V B (2v+1) (2041)

and the c-error response S(g&) of the presented implementation of VS~DCS is
i S(e) £  8(2v+1l (20+l) « h__ (g)

; max

or :
3 M = O(v ) -
'1; and S(g) = O(v3 *Log (g) . G) %
::-:' Proof .
=

&

; By previous remark and the fact that
2

‘ h (g) = Xog(e/8v) —  16vilog(Y)
x max 1 €
& fog(l - =—,
g 8v o
£ ,
§~ Conclusion
% Since we have assumed global parametexrs ¢ and v to be constant, by
=

Theorem 5.3 our system has relative real time response. Our restrictions on

) processors rates are much less than in our previous paper [Reif, Spirakis, 198l].
Furthermore, our programs seem much more modular and simple in design, although §

we have utilized new adaptive techniques to deal with arbitrary speed variability. ﬁ
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